Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38708544

ABSTRACT

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress. Yet, the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy are unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory, and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested using novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [non-pregnant (nulliparous), pregnant (near term), and 1-2 months post-pregnancy (primiparous); n = 7-8/group]. Plasma and CA1 proinflammatory cytokines were measured using a MILLIPLEX® magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via western blotting. Our results demonstrate CA1 oxidative stress-associated markers were elevated in pregnant compared to nulliparous rats (p ≤ 0.017) but were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (p ≤ 0.007) while anxiety-like behavior (p ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.

2.
Biol Sex Differ ; 15(1): 38, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664845

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS: Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1ß, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS: Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS: Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.


Sleep apnea is a common sleeping condition in adults with a wide range of symptoms that include inflammation, oxidative stress, memory problems, anxiety, and compulsivity. Men are diagnosed with sleep apnea more often than women. Although there is limited information on how sleep apnea affects men and women differently, previous studies suggest that women may exhibit different sleep apnea symptoms than men. To examine the impact of male and female sex on common sleep apnea symptoms, we exposed adult male and female rats to a model of sleep apnea called chronic intermittent hypoxia (CIH). We found that many effects of CIH were different in males and females. CIH females had increased inflammation and motor problems, whereas CIH males had increased oxidative stress and compulsivity. To investigate the reason for these CIH sex differences, we blocked mitochondrial oxidative stress. Blocking mitochondrial oxidative stress decreased CIH associated sex differences. However, blocking mitochondrial oxidative stress had no impact on CIH-induced memory impairment that was observed in male and female rats. Our findings support previous reports that suggest that women exhibit different sleep apnea symptoms than men. Further, we extend these findings by showing that mitochondrial oxidative stress is involved in these sex differences. Clinically, patients diagnosed with sleep apnea are typically treated with continuous positive airway pressure (CPAP) machines, which have high rates of non-compliance (15­40%). Therefore, understanding why sleep apnea is causing these symptoms will be important in developing therapeutics.


Subject(s)
Hypoxia , Rats, Sprague-Dawley , Sex Characteristics , Sleep Apnea, Obstructive , Animals , Female , Male , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Hypoxia/metabolism , Oxidative Stress , Mitochondria/metabolism , Rats , Inflammation/metabolism , Cytokines/metabolism , Cytokines/blood , Behavior, Animal
3.
Res Sq ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352622

ABSTRACT

Background Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). Methods Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1ß, IL-4, IL-6, IL-10, TNF-α), circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). A subset of rats was implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. Results Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. Conclusions Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.

4.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328246

ABSTRACT

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress. Yet, the impact of systemic inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy are unclear. We hypothesized that the maternal hippocampal CA1, a brain region associated with cognition, would be protected from pregnancy-associated systemic elevations in inflammation and oxidative stress, mediating stable peripartum cognitive performance. Cognitive performance was tested using novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [non-pregnant (nulliparous), pregnant (near term), and two months post-pregnancy (primiparous); n = 7-8/group]. Plasma and CA1 proinflammatory cytokines were measured using a MILLIPLEX® magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via western blotting. Our results demonstrate CA1 oxidative stress-associated markers were elevated in pregnant compared to nulliparous rats ( p ≤ 0.017) but were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired ( p ≤ 0.007) while anxiety-like behavior ( p ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Thus, peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.

5.
Biol Sex Differ ; 14(1): 81, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951901

ABSTRACT

BACKGROUND: Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring. METHODS: Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring. RESULTS: Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring. CONCLUSIONS: Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.


Sleep apnea during late pregnancy is a common pregnancy complication that can impact the brain development of children born to mothers with sleep apnea. Children with impaired brain development may present with decreased social skills, memory issues, anxiety, and compulsivity. It is unclear if there is a cause and effect relationship between sleep apnea during late pregnancy and behavioral changes in offspring. Additionally, it is unknown whether male or female sex or age of the offspring affects these relationships. In this study, we exposed pregnant rats to a model of sleep apnea called chronic intermittent hypoxia (CIH) within late gestation and examined the behavior of the offspring and brain activity during puberty and young adulthood. We found that CIH during late pregnancy had long-term effects in the offspring that were different in males and females. Notably, female offspring displayed social impairments in response to late gestation CIH, whereas male offspring displayed cognitive dysfunction.


Subject(s)
Corticosterone , Sleep Apnea Syndromes , Rats , Pregnancy , Female , Animals , Male , Rats, Long-Evans , Hypoxia/complications , Cognition , Sleep Apnea Syndromes/complications
6.
Res Sq ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333114

ABSTRACT

Background: Gestational sleep apnea affects 8-26% of pregnancies and can increase the risk for autism spectrum disorder (ASD) in offspring. ASD is a neurodevelopmental disorder associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. To examine the relationship between gestational sleep apnea and ASD-associated behaviors, we used a chronic intermittent hypoxia (CIH) protocol between gestational days (GD) 15-19 in pregnant rats to model late gestational sleep apnea. We hypothesized that late gestational CIH would produce sex- and age-specific social, mood, and cognitive impairments in offspring. Methods: Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine ASD-associated phenotypes, we quantified ASD-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, EGR-1, and doublecortin), and circulating hormones in offspring. Results: Late gestational CIH induced sex- and age-specific differences in social, repetitive and memory functions in offspring. These effects were mostly transient and present during puberty. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and increased circulating corticosterone levels, but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed on anxiety-like behaviors, hippocampal activity, circulating testosterone levels, or circulating estradiol levels, regardless of sex or age of offspring. Conclusions: Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for ASD-associated behavioral and physiological outcomes, such as pubertal social dysfunction, corticosterone dysregulation, and memory impairments.

7.
Biol Sex Differ ; 13(1): 54, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36175941

ABSTRACT

BACKGROUND: Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS: Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS: The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS: These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).


Subject(s)
Prenatal Exposure Delayed Effects , Animals , Brain/metabolism , Female , Humans , Hypoxia/complications , Hypoxia/metabolism , Male , Placenta/metabolism , Pregnancy , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
8.
J Endocr Soc ; 6(5): bvac030, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35308305

ABSTRACT

Sex differences have been observed in multiple oxidative stress-associated neurodegenerative diseases. Androgens, such as testosterone, can exacerbate oxidative stress through a membrane androgen receptor (mAR), AR45, localized to lipid rafts in the plasma membrane. The goal of this study is to determine if interfering with mAR localization to cholesterol-rich lipid rafts decreases androgen induced neurotoxicity under oxidative stress environments. We hypothesize that cholesterol-rich caveolar lipid rafts are necessary for androgens to induce oxidative stress generation in neurons via the mAR localized within the plasma membrane. Nystatin was used to sequester cholesterol and thus decrease cholesterol-rich caveolar lipid rafts in a neuronal cell line (N27 cells). Nystatin was applied prior to testosterone exposure in oxidatively stressed N27 cells. Cell viability, endocytosis, and protein analysis of oxidative stress, apoptosis, and mAR localization were conducted. Our results show that the loss of lipid rafts via cholesterol sequestering blocked androgen-induced oxidative stress in cells by decreasing the localization of mAR to caveolar lipid rafts.

9.
Endocrinology ; 162(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34467976

ABSTRACT

Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17ß-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.


Subject(s)
Gonadal Steroid Hormones/physiology , Neurodegenerative Diseases/etiology , Oxidative Stress/physiology , Sex Characteristics , Aging/physiology , Androgens/metabolism , Androgens/physiology , Animals , Estrogens/metabolism , Estrogens/physiology , Female , Humans , Male , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...